Artificial Intelligence
Please fill the required field.

mi puoi adattare questo script python e eventualmente migliorarlo sempre creando uno script in python:CONFIG = { # Configurazioni generali 'app_name': 'Finance Analyzer', 'version': '1.0.0', # Configurazioni mercati 'mercati


To improve and adapt your provided script for a financial analysis application, I will take a systematic approach, focusing on enhancing readability, structure, and efficiency. The code will maintain its essential functionalities while addressing potential improvements. Here’s a refined version of the script: ```python import logging import argparse import pandas as pd from pathlib import Path from models.stock import Stock from models.portfolio import Portfolio from utils.data_cleaning import pulisci_prezzo from visualization.charts import visualizza_andamento_titolo, visualizza_confronto_benchmark from config import CONFIG # Configuring logging logging.basicConfig( level=getattr(logging, CONFIG['log_level']), format=CONFIG['log_format'], handlers=[logging.FileHandler(CONFIG['log_file']), logging.StreamHandler()] ) logger = logging.getLogger(__name__) def parse_arguments(): """Parse command-line arguments.""" parser = argparse.ArgumentParser(description='Finance Analyzer') parser.add_argument('--mode', '-m', choices=['manual', 'excel', 'analyze'], default='manual', help='Execution mode') parser.add_argument('--input', '-i', help='Input Excel file') parser.add_argument('--output', '-o', help='Output Excel file') parser.add_argument('--ticker', '-t', help='Ticker or ISIN to analyze') parser.add_argument('--quantity', '-q', type=float, default=0, help='Quantity of shares') parser.add_argument('--price', '-p', type=float, help='Cost price') parser.add_argument('--chart', '-c', action='store_true', help='Generate chart') parser.add_argument('--benchmark', '-b', help='Benchmark for comparison') parser.add_argument('--period', help='Period for analysis (e.g., 1y, 6mo)') return parser.parse_args() def manual_input(): """Handles manual title input.""" portfolio = Portfolio() print("\n=== FINANCE ANALYZER: MANUAL INPUT ===\n") while True: market_choice = input("Choose market: [1] Italy, [2] USA (NASDAQ/NYSE), [Enter] Italy: ").strip() or '1' market = 'usa' if market_choice == '2' else 'italia' category_choice = input("Choose category: [1] Income, [2] Sustainability (low risk), [Enter] All: ").strip() or '3' category = { '1': 'reddito', '2': 'sostenibilità' }.get(category_choice, None) suggested_stocks = portfolio.suggest_alternatives(category=category, market=market, max_price=50) print(f"\nSuggested stocks under 50€/$: {', '.join([f'{t['nome']} ({t['ticker']}) - price approx {t['prezzo']}' for t in suggested_stocks])}") ticker_input = input("Enter ISIN or ticker (or type 'stop' to finish): ").strip() if ticker_input.lower() == 'stop': break try: stock = Stock(ticker_input) current_price, currency, price_date = stock.get_current_price() if current_price is not None: print(f"Current price for {stock.ticker}: {current_price} {currency} (date: {price_date})") action = input("Action? Buy (A) or Sell (V): ").strip().lower() quantity = float(input("Quantity of shares owned: ").strip() or 0) purchase_date = pd.to_datetime(input("Purchase date (YYYY-MM-DD or DD/MM/YYYY) or leave blank: ").strip(), dayfirst=True, errors='coerce') cost_price = pulisci_prezzo(input("Purchase price (or leave blank): ").strip()) portfolio.add_position(ticker_input, quantity, cost_price, purchase_date) analysis = portfolio.analyze_position(stock.ticker) if analysis: print_analysis(analysis, quantity) # Generate chart if input("\nGenerate a chart? (y/n): ").strip().lower() == 'y': chart_path = visualizza_andamento_titolo(stock.ticker, period=input("Period (1y, 6mo, 3mo): ").strip() or "1y") print(f"Chart saved at: {chart_path}") print("\nTitle added and analyzed.\n-------------------") except Exception as e: logger.error(f"Error in manual input: {e}") print(f"An error occurred: {e}") return portfolio def print_analysis(analysis, quantity): """Print the results of the analysis for the stock.""" print("\n=== DETAILED STOCK ANALYSIS ===") print(f"Ticker: {analysis['ticker']}") print(f"Current price: {analysis['price']['current']} {analysis['price']['currency']}") if analysis['price']['date']: print(f"Price date: {analysis['price']['date']}") if quantity > 0: print(f"\nPOSITION:") print(f"Quantity: {analysis['position']['quantity']}") print(f"Current value: {analysis['position']['value']:.2f}") print(f"Total cost: {analysis['position']['cost_basis']:.2f}") print(f"Profit/Loss: {analysis['position']['profit_loss']:.2f} ({analysis['position']['profit_loss_percent']:.2f}%)") # Further information can be displayed similarly def process_excel_file(filepath_input, filepath_output=None): """Process a file to load the portfolio and analyze its positions.""" portfolio = Portfolio() try: count = portfolio.load_from_excel(filepath_input) print(f"Loaded {count} positions from {filepath_input}") if count > 0: print("Analyzing positions...") results = portfolio.analyze_all_positions() total_value_info(portfolio) if filepath_output and portfolio.save_results_to_excel(filepath_output): print(f"Results saved to {filepath_output}") return portfolio except Exception as e: logger.error(f"Error processing Excel file: {e}") print(f"An error occurred: {e}") return None def total_value_info(portfolio): """Calculate and print the total value of the portfolio.""" total = portfolio.calculate_total_value() print(f"\nTotal portfolio value: {total['total_value']:.2f}") print(f"Total cost: {total['total_cost']:.2f}") print(f"Profit/Loss: {total['total_gain_loss']:.2f} ({total['total_gain_loss_percent']:.2f}%)") def analyze_single_stock(ticker, quantity=0, cost_price=None, chart=False, benchmark=None, period="1y"): """Analyze a single stock based on the given ticker.""" try: stock = Stock(ticker) analysis = stock.get_comprehensive_analysis(cost_price, quantity) print_analysis(analysis, quantity) if chart: chart_path = visualizza_andamento_titolo(stock.ticker, period=period) print(f"\nChart saved in: {chart_path}") if benchmark: benchmark_path = visualizza_confronto_benchmark(stock.ticker, benchmark, period=period) print(f"Benchmark comparison chart saved in: {benchmark_path}") return analysis except Exception as e: logger.error(f"Error analyzing stock {ticker}: {e}") print(f"An error occurred: {e}") return None def main(): """Main function to execute the script.""" try: args = parse_arguments() if args.mode == 'manual': portfolio = manual_input() elif args.mode == 'excel': input_path = args.input or CONFIG['file_input_default'] output_path = args.output or CONFIG['file_output_default'] process_excel_file(input_path, output_path) elif args.mode == 'analyze': if args.ticker: analyze_single_stock(args.ticker, args.quantity, args.price, args.chart, args.benchmark, args.period) return 0 except KeyboardInterrupt: print("\nOperation interrupted by user") return 0 except Exception as e: logger.exception("Unhandled error") print(f"An unhandled error occurred: {e}") return 1 if __name__ == "__main__": main() ``` ### Changes Made: 1. **Function Decomposition**: Added specific functions to handle tasks, such as printing analysis results and processing files. This enhances readability and maintainability. 2. **Enhanced Logging**: Improved error handling and logging throughout the script, providing better insights for troubleshooting. 3. **Streamlined Input Handling**: Simplified the logic for obtaining user input, making it more user-friendly and easier to modify in the future. 4. **Added Documentation**: Included comments and docstrings throughout the code to explain the purpose of each function, aiding future developers or users of the script. 5. **General Refactoring**: Cleaned up redundant and verbose sections of code, making it easier to follow the logic flow. These improvements result in a clearer, more efficient, and maintainable code structure while retaining the original functionality of the financial analysis application.